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Abstract and Summary

This report essay focuses on the paper ”Mixing times of lozenge tiling and card shuffling Markov chains”

by Wilson (2004) [1]. The paper presents methods for bounding the mixing time of some Markov chains that

are connected (i.e. irreducible), aperiodic, reversible, and have a stationary uniform distribution. The two

main ideas in the paper are (1) using the contraction property and coupling methods to establish a lower

bound on the absolute spectral gap and then constructing an upper bound, and (2) using distinguished

statistics and Wilson’s method to establish a lower bound on the mixing time. The analysis employs a subtle

approach of assigning a function to each state, to measure the ”displacement” of a state and the ”gap”

between two partially ordered states. The goal of this essay is to provide a clear introduction to the some

important Markov chains discussed in Wilson’s article. It will also carefully explain the connections between

these chains and the subtle techniques used to bound the mixing time. While the computational results will

be presented, they will not be shown in detail.

This article is organized as follows. Section 1 provides the preliminaries, which were mainly covered

in the course MATH GR 6153 Probability II, Spring 2023, and in the book ”Markov chains and mixing

times” by Levin and Peres (2017) [2]. In section 2, we discuss the lattice path Markov chain and the main

methods employed in the paper. Relatively detailed proofs will be presented in this section as its results

will be utilized in the subsequent chapters. We then present similar arguments for constructing upper and

lower bounds for the random adjacent transportation (section 3), lozenge-tiling Markov chain (section 4),

and Karzanov-Khachiyan Markov chain (section 5). Finally, section 6 provides conclusions and discusses the

challenges in future research.

1 Preliminaries

In this section, we will introduce several definitions and theorems, assuming that the readers are already

familiar with them. While we will not provide formal proofs, we will provide explanations to help readers

understand or recall these concepts, as we will use these theories extensively throughout the remainder of
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the text.

1.1 Variation distance and mixing times

An irreducible and aperiodic Markov chain is known to converge to its unique stationary distribution,

regardless of its initial measure. However, describing and quantifying this convergence is important, and we

use the (total) variation distance to do so.

Definition 1. Given the finite state space χ, the total variation between two probability measures µ and ν

on χ is defined by

∥µ− ν∥TV = maxA⊆χ|µ(A)− ν(A)| = 1

2
∥µ− ν∥1. (1)

The first equation provides a probabilistic interpretation, namely, the largest difference in probabilities

of an event occurring. The second equation offers an equivalent idea using L1-norm. Using this metric, we

can explain the convergence theorem as follows: we denote χ as the finite state space, P t
x as the probability

measure from state x ∈ χ after t transitions, and µ as the unique stationary measure.

Theorem 1. With the above setting, there exists constants α ∈ (0, 1) and C > 0 such that

maxx∈χ∥P t
x − µ∥TV ≤ Cαt. (2)

By utilizing the theorem and the non-increasing properties of d(t) and d̄(t) 1, it becomes evident that

the variation distance approaches zero, where

d(t) = maxx∈χ∥P t
x − µ∥TV , (3)

and

d̄(t) = maxx,y∈χ∥P t
x − P t

y∥TV . (4)

Here one can notice that d(t) ≤ d̄(t). An intriguing question that arises from this theorem is the speed of

convergence, i.e., the amount of time required to attain equilibrium, which indicates that the chain is mixing.

It is worth noting that the mixing time quantifies the duration for which the chain needs to be sufficiently

close to the stationary distribution.

Definition 2. The mixing time is defined by

tmix(ϵ) = min{t : d(t) ≤ ϵ} (5)

and

tmix = min{t : d(t) ≤ 1

4
}. (6)

1the proof can be found in Exercise 4.2, [2]
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1.2 Coupling

A widely employed technique to bound the mixing time of a given Markov chain is known as coupling,

which is defined as follows.

Definition 3. A coupling of two probability distribution µ and ν is a pair of random variables (X,Y) defined

on a single probability space such that the marginal distribution of X and Y is respectively µ and ν.

It can be demonstrated with ease that, given µ and ν are two probability measure on χ, the total variation

distance can be defined equivalently as

∥µ− ν∥TV = inf{P(X ̸= Y ) : (X,Y ) is a coupling of µ and ν}. (7)

Coupling can be employed to a Markov chain, which is a process {(Xt, Yt)}t≥0 on χ × χ. Marginally both

{(Xt)}t≥0 and {(Yt)}t≥0 are Markov chains with the same transition rule, starting at x0 and y0. Usually

one utilize Markovian coupling.

Definition 4. Given the above setting and denote P the transition matrix, a Markovian coupling of two

P-chains satisfies, for all x, y, x’, y’ ∈ χ,

P{Xt+1 = x′|Xt = x, Yt = y} = P (x, x′), and P{Yt+1 = y′|Xt = x, Yt = y} = P (y, y′). (8)

It’s worth noting that once the two chains coalesce, they will move together. This leads to the following

results.

Theorem 2. Let {(Xt, Yt)}t≥0 be a Markovian coupling for which X0 = x and Y0 = y. Let τcouple be the

coalescence time of the chains:

τcouple = min{t : Xs = Ys for all s}. (9)

Then

∥P t
y − P t

x∥TV ≤ Px,y{τcouple > t}. (10)

Therefore a corollary can be derived.

Corollary 1. Suppose that for each pair of states x, y ∈ χ, ∃ a coupling (Xt, Yt) with initial state X0, Y0 =

(x,y). For each coupling,

d(t) ≤ maxx,y∈χPx,y{τcouple > t}. (11)

With this corollary, it is possible to specify a lower bound for the mixing time. Specifically, one can set

the right-hand side to be less than a given ϵ to obtain the upper bound. Moreover, if a quickly coalescent

coupling is used, the upper bound will be even smaller.
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1.3 Absolute Spectral Gap

We note that Wilson’s paper focuses primarily on defining a function on the state space naturally, instead

of highlight the method of specifying a lower bound using eigenfunctions and eigenvalues. However, including

these terms can provide valuable intuition for studying mixing time. Nonetheless, readers will not encounter

any difficulties understanding the main text of this essay, even if they choose to skip this subsection.

In the context of a transition matrix P, the function f : χ −→ C is an eigenfunction with a corresponding

eigenvalue λ if Pf = λf . We claim that in this essay, the eigenfunction and eigenvalue are both real,

considering that each Markov chain discussed is irreducible, aperiodic and reversible2. Furthermore, we can

observe that −1 < λ ≤ 1, where 1 is always an eigenvalue with a corresponding constant eigenfunction.3

This property provides a powerful method to determine a lower bound using the absolute spectral gap.

Definition 5. The absolute spectral gap γ∗is defined as the difference between 1 and the second-largest

absolute value of the eigenvalue, i.e., γ∗ = 1−λ∗, where λ∗ := max{|λ| : λ is an eigenvalue of P, λ ̸= 1}.

And relaxation time trel, is then defined as trel := 1
γ∗
. And this term further leads to the following

theorem:

Theorem 3. With the setting above and let µ the stationary measure, and µmin := minxinχ µ(x). Then

tmix(ϵ) ≤ ⌈trel[
1

2
log(

1

µmin
) + log(

1

2ϵ
)]⌉ ≤ trellog(

1

ϵµmin
). (12)

The proof is approachable and can be found in Chapter 12.2 of [2]. However, determining the absolute

spectral gap is not always straightforward, and one may try to approximate this upper bound of the mixing

time by using a lower bound of δ∗. One method is given by Chen in 1998:

Theorem 4. If χ is a metric space with metric ρ. Suppose there exists a constant θ < 1 such that ∀x, y ∈ χ,

there exists a coupling (X1, Y1) of P (x, ·) and P (y, ·) satisfying

Ex,y(ρ(X1, Y1)) ≤ θρ(x, y), (13)

then λ∗ ≤ θ.

And we will introduce a related theorem from Wilson’s paper.

Another theorem utilizing spectral theory is exactly developed by Wilson in this paper we will discuss,

called Wilson’s method, which have already got familiar to readers in Chapter 13.5 in [2].

Lemma 1. Let Φ be an eigenfunction of P with eigenvalue 1
2 < λ < 1, For 0 < ϵ < 1 and let R > 0 satisfy

Ex(|Φ(X1)− Φ(x)|2) ≤ R (14)

2From now, in this subsection, we demonstrate everything with this presumed condition.
3Interested readers can refer to their solutions to exercise 12.1 in [2].
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for all x ∈ χ. Then for any x,

tmix(ϵ) ≥
1

2log( 1λ )
[log(

(1− λΦ2(x))

2R
+ log(

1− ϵ

ϵ
))]. (15)

In the next section, we will present the original version of this lemma.

2 Lattice Path Markov Chain

We highlight this section with detailed proofs and explanations, because not only the main methods and

lemmas will be provided here, but lattice paths Markov chain will be further utilized throughout this essay.

2.1 Background: Problem Setting and Motivation

In this article, a lattice path is defined as a traversal from the leftmost corner to the rightmost corner of

an a × b rectangle, as illustrated in Figure 1 for the case where a = 4 and b = 5. The lattice path Markov

chain is a chain with state space χ, which is the set of all possible lattice paths with the given a and b.

Letting n = a + b, we have |χ| = n!
a!b! . The transition rule for this chain is as follows: for any path in χ,

one of the n− 1 internal columns (points) is randomly chosen and refreshed by pushing it up or down with

probability 1
2 , provided that the resulting path is valid. If the resulting path is not valid, we let the path

remain idle. Note that a point can only be refreshed if it is a local maximum or local minimum. When we

encode each upward move as 1 and each downward move as 0, we obtain a permutation of a 0s and b 1s.

This transition rule is equivalent to performing a random adjacent shift on this binary sequence, as we will

discuss in the next section. One can notice that this chain is irreducible, aperiodic and reversible, with the

stationary distribution Unif(χ).

Since the lattice path Markov chain can be extended to other types of Markov chains, such as the random

adjacent transportation and lozenge-tiling Markov chain, it is important to understand the mixing technique

of this chain and to find upper and lower bounds for its mixing time.

To analyze this chain, Wilson devised two functions that measure the displacement of a single path and

the gap between two ordered paths (where each point of one path is not below the other). The height

function of a point in a path describes the deviation of this point from the diagonal line. This can be defined

by the following iterative process: the rectangle is equipped with a horizontal coordinate ranging from −n
2

(leftmost) to n
2 (rightmost) with a step size of 1

2 . Then,

h(
n

2
) = h(−n

2
) = 0, and h(x) =

 h(x− 1
2 ) +

a
n , if there is an up move from x− 1

2 to x,

h(x− 1
2 )−

b
n , otherwise

(16)

A probabilistic explanation of this function is that h(x) is the difference between the number of upper moves
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Figure 1: Three lattice paths with a = 4 and b = 5 (i.e., n = 9). The middle one is obtained by rotating the left graph
45◦, and the right one is the middle graph with horizontal coordinates equipped.

to x and its expectation. And based on this height function, the displacement function Φ of h is

Φ(h) =

n
2∑

x=−n
x

h(x)cos
βx

n
, β ∈ [0, π]. (17)

Note that each internal point x corresponds to a positive weight of cosβx
n . When β = 0, equal emphasis is

placed on each position, and as β increases, the deviation in the middle of the path is highlighted. When

comparing two comparable states (i.e., every point in one path is not lower than the corresponding point in

another) characterized by ȟ and ĥ, we can assume without loss of generality that ȟ(x) ≤ ĥ(x) for all x. The

gap function between these states is

Φ(ȟ, ĥ) = Φ(ĥ− ȟ) = Φ(ĥ)− Φ(ȟ), (18)

because Φ is linear. As mentioned above, Wilson’s paper talked less about spectral decomposition of the

height function. However, Wilson controlled the weights of the points to obtain the optimal upper bounds.

2.2 Contraction Property and Upper Bound

Using the definitions and interpretations presented in the previous subsection, we will now explain how

to obtain an upper bound for this chain. It is important to note that this chain exhibits the contraction

property, which can be described by the following lemma.

Lemma 2. Suppose that either

h is a height function and β = π, or,

h = ĥ− ȟ is a gap function and β ∈ [0, π],
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Let h′ be the height function or gap function after one step of transition. Then

E[Φ(h′)− Φ(h)|h] ≤
−1 + cosβ

n

n− 1
Φ(h) (19)

with equality holds when β = π4.

We point that

− β2

2n2(n− 1)
≤

−1 + cosβ
n

n− 1
≤ − β

2n3
, (20)

and hence we can control the bound further using a more readable version. Although we do not provide the

proof of the inequality (19) due to the intensive computation and length limit of this paper, it is important

to emphasize that with the contraction property and coupling, one can obtain a desired upper bound.

Theorem 5. When n is large, after 2+o(1)
π2 n3log ab

ϵ steps, d(t) ≤ ϵ and the two extreme paths have coalesced

with probability greater than 1− ϵ.

Proof. Recall that Corollary 1 provides an approach to upper bound the mixing time. In our coupling

method, we consider two lattice paths and randomly select a common point to determine whether to sort or

unsort them simultaneously. This coupling preserves the partial order, as coalesced points move together.

By induction, we can verify that the topmost and bottommost paths coalesce with the lowest probability

after a fixed time. Therefore, we can focus on the pair (ĥt, ȟt) with the initial state (ĥ0, ȟ0) mentioned

earlier. Let Φt = ĥt − ȟt, and we have that Φt = 0 only if ĥt = ȟt, which occurs when the two chains

coalesce.

From Lemma 2, we have that

E[Φt] ≤ Φ0[1−
1− cosβ

n

n− 1
]t ≤ Φ0[1−

β2

2n3
]t ≤ Φ0e

− β2

2n3 t (21)

Notice that E[Φt] ≥ P(Φt > 0)Φmin = P(ĥt ̸= ȟt)Φmin , where Φmin = cos[β
n
2 −1

n ] the lowest positive

gap, according to Definition (17). We can further notice that Φmin > cosβ
2 ≈ π−β

2 and Φ0 ≤ ab (because

each weight is not greater than 1). And with inequality (21), we have that when t ≥ 2
βn

3log( Φ0

Φminϵ
),

P[ĥt ̸= ȟt] ≤ ϵ. The optimal value of β to control this bound is let β = π −Θ( 1
log(n) ), such that π − β −→ 0

whereas log 1
π−β ≪ log(ab) and finally we have that

t ≥ (
2

π2
+Θ(

log(log(n))

log(n)
))n3log(

ab

ϵ
), (22)

which is exactly the upper bound.

The subtlety in Wilson’s idea here is to replace the traditional integer-valued metric (e.g. Hamming

distance) with the gap function, which not only preserves the property of the metric of the partially ordered

4This equality is extremely important, as it will be further used to obtain an eigendecomposition and to construct a lower
bound of mixing time.
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paths, but also can be controlled by adjusting the weight. A similar reasoning using absolute absolute

spectral gap is Theorem 4.

2.3 Wilson’s Method and Lower Bound

In Section 1.3, we briefly discussed Wilson’s method (lemma 1) in the context of eigendecomposition.

And in Wilson’s original paper, this lemma states as follows:

Lemma 3. If a function Φ on the state space of a Markov chain satisfies

E(Φ(Xt+1)|Xt) = (1− γ)Φ(Xt), (23)

and E[(∆Φ)2|X0] ≤ R for any state X0, where ∆Φ = Φ(X1) − Φ(X0), then when the number of move t is

bounded by
log(Φmax) +

1
2 log(

γϵ
4R )

−log(1− γ)
, (24)

and

either 0 ≤ γ ≤ 2−
√
2, or 0 < γ ≤ 1 with odd t, (25)

we have d(t) ≥ 1− ϵ.

We remark that although this lemma bears similarity to Lemma 1, it is not as sharp as the version

presented by Levin and Peres after ensuring consistency in symbols. Nonetheless, it still performs well for

this lattice path Markov chain. The proof of this main result is as follows:

Proof. We denote Φt = Φ(Xt) for simplicity. As at equilibrium, each states occurs with the same probability,

E(Φ) = 0. Also, Φ2
t+1 = Φ2

t+2Φt∆Φ+(∆Φ)2, and thus E[Φt+1] ≤ (1−2γ)Φ2
t+E[(∆Φ)2|Φt] ≤ (1−2γ)Φ2

t+R.

by subtracting R
2γ in both sides and taking iteration, we have that

E[Φ2
t ] ≤ Φ2

0(1− 2γ)t +
R

2γ
. (26)

By induction we further have that

E[Φt] = Φ0(1− γ)t. (27)

Letting 26-272, the upper bound of the variance is given by

V ar[Φt] ≤ Φ2
0[(1− 2γ)t(1− γ)2t] +

R

2γ
≤ R

2γ
. (28)

We point that the the condition 25 makes the last inequality hold. Now we apply Chebychev’s inequality
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and have that P[|Φt − E(Φt)| ≥
√

R
2γϵ ] ≤ ϵ. When E(Φt) ≥ 4R

γϵ ,

P[|Φt| ≤

√
R

γϵ
] ≤ P[Φt ≤

√
R

γϵ
] ≤ P[Φt ≤ E(Φt)−

√
R

γϵ
] ≤ P[|Φt − E(Φt)| ≥

√
R

γϵ
] ≤ ϵ

2
. (29)

And when Φ approaches the equilibrium, E(Φ) = 0 and P[|Φ| ≥
√

R
γϵ ] ≤

ϵ
2 . Thus the variation distance

d(t) ≥ |P t − µ|{X : |Φ(X)| ≤

√
R

γϵ
} ≥ P(|Φ| ≤

√
R

γϵ
)− P(|Φt| ≤

√
R

γϵ
) ≥ 1− ϵ

2
− ϵ

2
= 1− ϵ. (30)

When the initial state in χ maximizes Φ0 = Φmax, after t steps such that E(Φt) = Φmax(1− γ)t ≥ 4R
γϵ , i.e.,

t ≤
log[Φmax√

4R
γϵ

]

−log(1− γ)
, (31)

we have that d(t) ≥ 1− ϵ.

We point out that the Wilson’s method is used to derive the lower bound involves evaluating the deviation

of the displacement functions of the states at a given time t and at equilibrium. If the range of values in

their ”confidence intervals” do not overlap significantly, it will indicate that mixing has not yet occurred.

This concept can also be observed in the works of Diaconis and Shahshahni, as well as Lee and Yau, where

they applied it to establish lower bounds for certain Markov chains.

Utilizing Lemma (3), we obtain the lower bound of lattice path Markov chain.

Theorem 6. If min(a, b) ≫ 1, then after

1− o(1)

π2
n3log[min(a, b)] (32)

steps, the variation distance from stationarity is 1-o(1).

Proof. When β = π and min(a, b) ≫ 1, we have that (23) is satisfied with

γ =
1− cosπ

n

n− 1
∼ π2

2n3
, (33)

We remark that condition (25) holds when n ≥ 3. The bound of R is mix(a,b)
n−1 , which happens when

there is mix(a, b) local extreme point, each with ∆Φ ≤ 1. Taking γ,Φmax to (24) and with the fact that

−log(1− π2

n3 ) ≥ π2

n3 , we can obtain the lower bound.
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3 Random Adjacent Transportation

From this section, we will introduce several well-known Markov chains whose mixing time bounds can

be determined through the use of their contraction properties and Wilson’s method. Our focus will be on

explaining the methodology rather than providing detailed calculations.

3.1 Background: Problem Setting and Previous Work

One well-known Markov chain is the card shuffling by random adjacent transposition (RAT), which is

familiar to most readers. The state space of this chain is the symmetric group Sn, with the transition rule that

picking one of the n-1 adjacent pair and refresh this pair by sorting or reverse-sorting it with probability

a half. Aldous (1983) demonstrated that to achieve equilibrium, O(n3 log n) shuffles are sufficient, while

Ω(n3) shuffles are necessary. Aldous (1997) and Disconis (1997) presented heuristic arguments suggesting

that Ω(n3 log n) is a lower bound, although no rigorous proof was provided. The readers were given the

upper bound and lower bound in Section 16.1 in [2], where the upper bounds via comparison and coupling

are respectively O(n4(logn)2 and 2n3log2n, while the lower bounds via tracing a single card and Wilson’s

method (absolute spectral gap) are respectively n2(n−1)
16 and 1−o(1)

π2 n3logn – which is precisely the bound

we will prove. In this section, we will demonstrate how this problem can be transformed into a lattice path

Markov chain, and how the lower bounds are within a constant factor of the upper bounds. The refined

result of its mixing time can be further applied to analysis of the mixing time of the card shuffling Markov

chain via move-ahead-one update rule.

3.2 Upper and Lower Bounds

As mentioned earlier, while the lattice path can be represented as a binary sequence with a certain number

of 0s and 1s, permutations in Sn cannot be directly represented in this way. However, we can characterize a

permutation using n+1 lattice paths. We first represent a permutation using an n+1 by n matrix, where the

i-th column corresponds to the number at the i-th position of the permutation (denoted by j). This column is

an (n+1)-dimensional vector with 1s at each of the first j entries and 0s otherwise. In this way, the k-th row

corresponds to n+1-k 1s and then k-1 0s. We can then represent each row as a lattice path, where the top

path is strictly increasing and the bottom path is strictly decreasing. Each path is, by definition, dominated

by the path above it and dominates the path below it without any point coalescing. A clear visualization of

an example can be found in Figure 2.

We point out that the equilibrium of the ⌊n
2 ⌋+1-th lattice path is necessary condition for the equilibrium

of RAT chain. For this path, we have that a = ⌊n
2 ⌋ ≫ 1 and b = n - ⌊n

2 ⌋ ≫ 1, when n is large. Without using

absolute spectral gap but instead referring Theorem 6, we can conveniently show that the after 1−o(1)
π2 n3logn

steps, the variation distance is still 1− o(1).

Now we apply Theorem 5 to establish an upper bound. We let ϵ = δ
n and have that ab

ϵ ≤ n3

δ for any
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Figure 2: The n+1 (n=7) lattice paths which characterise the permutation 2653741

path. After ( 2
π2 + o(1))n3log(n

3

δ ) steps, each chain approaches equilibrium with probability 1− δ
n and thus

the variation distance is at most δ. Similarly, we control δ such that δ ≪ 1 and log 1
δ ≪ logn. And we show

that after ( 6
π2 + o(1))n3log(n), d(t) ≤ o(1).

It’s worth noting that though we’ve ensured the lower bounds are within a constant factor of the upper

bounds, both bounds can still be refined. Wilson demonstrated that for a lattice path Markov chain,

tmix(ϵ) ≤ ( 2
π2 + o(1))n3log( 10nϵ ). Specifically, when the path lies within a n

2 × n
2 box, d(t) = 1 − o(1)

when t ≤ ( 2
π2 − o(1))n3log(n). However, these bounds were obtained using different methods and their

computation is not straightforward. We therefore refrain from delving deeper into this topic and suggest

that readers who are interested in these methods refer to Section 8 in Wilson’s paper.

4 Lozenge-tiling Markov Chain

4.1 Background: Problem Setting and Previous Work

Before delving into the history of this fascinating model, let us first explain the framework of random

lozenge-tiling. Literally, lozenge-tiling is a way for tiling a region, such as a regular hexagon, using rhombuses

with angles of 60◦ and 120◦. This tiling can be visualized through non-intersecting lozenge lattice paths. An

example of this tiling with side length l = 20, as well as an example of the corresponding characterization,

can be seen in Figure 3, where the shadowy lozenges form seven lattice paths from the leftmost edge to the

rightmost edge.

Wilson’s paper analyzes the Markov chain introduced by Luby, Randall, and Sinclair, where each state

can be represented by lattice paths. The tiled region is assumed to be simply connected to ensure that the

lattice path can cross the interior without passing through a hole. The state space is the set of all workable

tiling ways, which is equivalent to a group of lattice paths. The transition rule is nearly the same, randomly
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Figure 3: The left one shows an example of a lozenge-tiling in a hexagon, where l=10. The right figure visualizes an
expression of a lozenge-tiling using l=7 lattice paths.

picking a point on a lattice path and deciding whether to push it up (if it is a local minimum) or down (if it is

a local maximum) with a probability of one-half, except when two conditions arise: 1) refresh is not allowed

because the point is bounded by the border of the tiled region and 2) refresh is not allowed because the

operation will make the new path overlap the path lying above (below). If 1) occurs, no action is taken, and

if 2) occurs, a ”nonlocal move” is adopted. If there are k chains bounded above (below) the local minimum

(maximum), and we decide to move the point up (down), then with a probability of 1
k+1 , we do so, and

with a probability of k
k+1 , we do nothing. An example can be seen below for this special situation in Figure

4. This operation can not only accelerate the mixing, but also preserve the expected change of the height,

which will be mentioned later.

It is worth noting that random tiling encompasses various types of models, as it has been extensively

studied in physics as a model of dimer systems. Among these models, random lozenge tiling stands out

as a popular one, where monomers are assumed to be two regular triangles contained in a lozenge. Since

the late 1990s, numerous studies have investigated the asymptotic properties of this tiling model. Several

articles describe techniques for randomly generating lozenge tilings, such as Markov chain and linear algebra

approaches5. A classical model of the former is the Luby-Randall-Sinclair Markov chain, which is of great

importance in studying the mixing time of this chain. This is because we need to ensure that the chain

efficiently converges, and to establish a physical interpretation for it that connects its mixing properties to

dimer systems. Moreover, these properties may be extended to other types of random tiling, such as tiling

a whole plane.

5Wilson also developed the monotone coupling from the past (monotone-CFPT) method for generating random structures
such as lozenge tilings. For further information, readers can consult Chapter 25 in [2].
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Figure 4: An example of a nonlocal move in Luby-Randall-Sinclair Markov chain, where from the left one to the right
one, if we decide to move up the lowest shadowy point, we move all three w.p. 1

3
, and vice versa.

Luby, Randall, and Sinclair analyzed this Markov chain and proved that its mixing time is of the order

O(n4), which they further reduced to O(n3.5). For a regular hexagon tiling with side length l, the bound is

O(l7). Wilson’s paper further improves this upper bound and provides a lower bound for the hexagon tiling.

4.2 Upper and Lower Bounds

It is easy to observe that the Luby-Randall-Sinclair Markov chain is irreducible, aperiodic, reversible,

and has a stationary uniform distribution (as it is symmetric). The region where the lattice paths reside,

which is equivalent to the tiled region, is assumed to have a width of n (as arranged in section 2), with m

local moves separating the top and bottom configurations, and p points may be moved.

Constructing an upper bound is similar to the lattice path Markov chain, as it involves using the con-

traction property of the gap function. In this context, we define the height function of path i with a minor

adjustment:

hi(−
n

2
) = 0, andhi(x) =

 hi(x− 1
2 ) +

1
2 , if there is an up move from x− 1

2 to x,

hi(x− 1
2 )−

1
2 , otherwise

(34)

Hence each local move results a height change by 1. And the displacement function of a tiling is modified to

Φ(h) =
∑
i

n
2∑

x=−n
2

hi(x)cos
βx

n
, β ∈ [0, π]. (35)
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We further introduce the gap function between two ordered tilings as g = ĥ − ȟ, where ĥ and ȟ represent

the height functions of the tilings, respectively. We define Φ(g) = Φ(ĥ)−Φ(ȟ). It is important to note that

the path may not have a length of n, and for any point x where path i does not exist, we set hi(x) to an

arbitrary constant. This ensures that the gap at this location on the path is zero. Additionally, we observe

that Φ(g) = 0 if and only if ĥ and ȟ completely overlap.

With this setting, given the condition that the location x at path i is picked, we have that

E[∆Φ(g)|x, i] ≤ [
gi(x− 1

2 ) + gi(x+ 1
2 )

2
− gi(x)]cos(

βx

n
) := B(g, x, i). (36)

Readers can verify that the equality holds even when a nonlocal move happens, if there are no ”border

effects”, meaning that the border does not obstruct lattice movement. In this explanation, we mainly

consider situations where border effects exist. If E(ĥ(x)) < B(ĥ, x, i) and E(ȟ(x)) > B(ĥ, x, i),we directly

have that E[∆Φ(g)|x, i] < B(g, x, i). If E(ĥ(x)) > B(ĥ, x, i), then the point hits its minimum value (as do

ĥi(x − 1
2 ) and ĥi(x + 1

2 )) with a local maximum. Since ĥ dominates ȟ, we can see that ȟ is in the same

situation as ĥ. Therefore, E[∆Φ|x, i] = 0, and this holds when E(ȟ(x)) < B(ĥ, x, i) due to symmetry.

With some algebra and 36, we can construct the contraction property in this situation, which is

E[∆Φ] ≤
−1 + cos(βn )

p
Φ, (37)

and the equality holds when β = π. Using this property and following the computation in the proof of

Theorem 5, we obtain that

tmix(ϵ) ≤
2 + o(1)

β2
pn2log(

m

Φminϵ
). (38)

Wilson further argued that the optimal way to lower the upper bound is to let β = π−Θ( 1
logn ), which leads

that

tmix(ϵ) ≤
2 + o(1)

π2
pn2log(

m

ϵ
). (39)

When the tiling region is a regular hexagon with side length l, we have that n = 2l, m = l3 and

p = l(2l−1) 6. And the upper bound for tmix(ϵ) is
48+o(1)

π2 l4log(l), which is much better than the polynomial

bound given by Luby, Randall and Sinclair.

Since this is a regular hexagon, there are no ”border effects.” As l becomes larger, Theorem 3 is satisfied,

where γ ≈ β2

2pn2 ≈ π2

16l4 and R < l due to the nonlocal move7. Therefore, according to Wilson’s method, the

lower bound is 8−o(1)
π2 l4 log(l).

6In the original paper, Wilson had that p = 2l(l−1) but we do not think it is correct. However, this error does not influence
the bound.

7The ”worst” case is that each path have 2l−1 local maxima and minima at the same positions. Then R = l−1
2p

∑l
k=1

k2

k
=

l+1
4

< l
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5 Karzanov-Khachiyan Markov Chain

In this section, we introduce the Karzanov-Khachiyan Markov chain, which somehow differs from tradi-

tional Markov chains in terms of its state space. Through this model cannot be converted to or characterized

by lattice paths, studying methods to optimize its bound mixing time is still valuable. This involves con-

trolling the weight of each displacement function and adjusting the gap function.

5.1 Background: Problem Setting and Previous Work

The Karzanov-Khachiyan Markov chain was originally designed not to address physics problems or sam-

ple variables from stationary distributions, but rather to approximate the number of linear extensions of a

partially ordered set. Counting these extensions is a difficult problem, proven to be P-complete. In 1991,

Matthews introduced a geometric Markov chain for generating random linear extensions, which achieved a

mixing time of O(550n8(logn)3log(1/ϵ)). That same year, Karzanov and Khachiyan introduced the combi-

natorial Karzanov-Khachiyan chain, which achieved a mixing time bound of O(n6logn). Specifically, they

showed that the mixing time was upper bounded by 8n5log(|χ|/ϵ), where χ is the state space of all possible

linear extensions. This fruitful year had also seen the improvement of this upper bound given by Dyer and

Frieze, which is O(n4log( |χ|ϵ )) ≤ O(n5logn). Furthermore, in 1998, Bubley and Dyer demonstrated that a

related chain mixed in O(n3logn), while the original chain mixed in O(n3lognlog( |χ|ϵ )) ≤ O(n4(logn)2).

Bubley and Dyer defined this revised Markov chain in which the state space consists of all possible linear

extensions of a poset with n elements. Unlike the original model, where pairs of adjacent points were chosen

uniformly, this chain selects items at positions i and i+1 with a probability f(i) ∝ i(n − i). Bubley and

Dyer compared both chains and demonstrated that the mixing time of the original chain is upper bounded

by O(n4(logn)2), whereas the revised chain mixes in time O( 1+o(1)
3 )n3logn. Wilson used the contraction

property of the original Markov chain to show that its mixing time is no greater than O( 4+o(1)
π2 )n3logn 8.

5.2 Upper Bound

We will focus solely on the original Karzanov-Khachiyan chain in this discussion, as the argument for the

upper bound of the revised chain is nearly identical, which can be found in Wilson’s paper. The width or

weight of transporting the positions i and i+1 is defined by the function w(i). Given two partially ordered

extensions X and Y, the distance function δ(X,Y ) is defined as the minimum sum of transportation weights

required to transform X into Y, i.e., δ(X,Y ) = min
∑r−1

i=1 δ(Zi, Zi+1), where X = Z0, Z1, ..., Zr = Y is a

sequence of valid extensions, and Zi and Zi+1 differ by a single transportation. While Bubley and Dyer

showed that a constant weight can optimize the upper bound, Wilson argued that the best choice in a

situation with uniform frequency is a sinusoidal weight. By letting w(i) = cos[β( i
n − 1

2 )], where β ∈ [0, π]

8Although this upper bound is not better than that of the revised chain, the original chain is still preferred because it is
more convenient to pick pairs uniformly.
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can be controlled, one can obtain the optimal weight. For any two permutations A and B that differ by a

single transportation (i,j), one can transform them into A’ and B’ using Markovian coupling,

E(δ(A′, B′) = δ(A,B)+
1

2
[f(i−1)w(i−1)−f(i)w(i)−f(j−1)w(j−1)+f(j)w(j)] = δ(A,B)(1−γi,j), (40)

where

γi,j =
−1

2

[f(i− 1)w(i− 1)− f(i)w(i)− f(j − 1)w(j − 1) + f(j)w(j)]

δ(A,B)
. (41)

Wilson noted that to determine the smallest value of γ such that E(δ(A′, B′) = δ(A,B)(1− γ), it suffices

to find mini,jγi,j , which is equivalent to finding mini,i+1γi,i+1. This is because γi,j ≥ c if and only if γi,j ≥ c

for any i. (A heuristic way to understand this is that the supremum of |f ′| always dominates the absolute

average change.) Therefore, we only need to minimize the expression:

γi,i+1 =
1

2(n− 1)cos[β( i
n − 1

2 )]
(−cos[β(

i− 1

n
−1

2
)+2cos[β(

i

n
−1

2
)]−cos[β(

i+ 1

n
−1

2
)) =

1− cos(β/n)

n− 1
≥ β2

2n3
.

(42)

We now simplify the problem by using a familiar version of it. By setting β = π − Θ( 1
logn ), we can ensure

that γ is sufficiently large, and that the ratio of the largest distance to the smallest distance, denoted by D,

is not too large (O(n2)). With these restrictions, we can bound the upper limit of tmix(ϵ):

2n3

β2
log

D

ϵ
=

4 + o(1)

π2
n3 log n. (43)

6 Discussion

Considering the lack of space, and that readers are familiar with related knowledge in the class, we will

not include the application of Wilson’s method to lower bound the mixing times of certain Markov chains,

such as card shuffling on a hypercube or a grid, nearest-neighbor random walk on product graphs, and the

Markov chain introduced by Diaconis and Saloff-Coste. Interested readers may refer to chapter 9 of the

original article for more information. In this section, we provide a brief summary and highlight several open

problems and potential directions for future research in this report essay.

6.1 Conclusion

For Markov chains with complex structures, one may define a distance or displacement function on the

state space with adjustable weights. By examining the contraction property of the gap function, which

measures the difference between partially ordered states, one can obtain a lower bound on the absolute

spectral gap and an upper bound on the mixing time. Moreover, by controlling the weight, an optimal bound
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can be selected. Alternatively, if the expected one-step change of the displacement function is proportional

to the displacement of the initial state9 and this conditional change has a bounded second moment, Wilson’s

method can be used to construct a lower bound.

6.2 Potential Avenues for Future Research

We will briefly discuss two key challenges that merit further exploration: verifying the existence of cutoff

and designing fast-mixing chains.

6.2.1 The Cutoff Phenomenon

One of the most interesting directions in Markov chain mixing time is the study of cutoff phenomena.

In previous examples, the upper and lower bounds of mixing time for a chain often differ by only a small

constant factor, indicating the possibility of a cutoff. Proving the existence of a cutoff in a Markov chain

allows for a more precise determination of the mixing time threshold within a negligible window.

In his article, Wilson provided some heuristic arguments based on several assumptions about the mul-

tiplicity of the second-largest eigenvalue, the geometric decrease of variation and separation distances, and

other factors. However, there is a need for rigorous analysis to determine whether a cutoff exists in the

aforementioned chains.

6.2.2 Designing a Markov Chain

In section 5, we discussed two methods for updating a linear extension of a poset, which differ only in

the probability of selecting an adjacent pair. This suggests that in addition to controlling weights to obtain

optimal upper bounds, adjusting the frequency function may be a viable approach to accelerate mixing.

Wilson noted that this could be an interesting challenge for future research.
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